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RESONANCE WAVES IN A MODEL OF A TWO-LAYERED LIQUID

UDC 532.59O. Yu. Tsvelodub

With allowance for surface interaction between phases, the behavior of long-wave perturbations at
the interface between two layers of dissimilar liquids, which form resonance triplets described by a
pseudodifferential equation, is studied.

1. We consider a system consisting of two ideal immiscible liquids in a gravity field. The heavy liquid
of density ρ0 occupies the lower part of the half-space (z < 0). Above, there is a thin layer of a lighter liquid of
density ρ1, bounded from above by a rigid horizontal plane. We introduce the following notation: h0 is the thickness
of the upper layer in an unperturbed system and σ is the coefficient of surface interaction between the phases.

In the case of very thin layers, the problem for long-wave interfacial perturbations reduces to an analysis of
solutions of the following evolution equation obtained in [1]:

ut + (u+ u2 − αLu− βuxx)x = 0. (1.1)

Here u is the displacement of the interface; the subscripts t and x denote differentiation with respect to t and x,
respectively; L is a linear, symmetrical pseudodifferential operator whose action in the k-space reduces down to
multiplication of the corresponding Fourier-harmonic by |k|.

In derivation of Eq. (1.1), the conditions α = ρ2/(2ρ1) and β = σ/[g(ρ2 − ρ1)h2
0] (β � α) were assumed to

be satisfied.
Equation (1.1) is a long-wave evolution equation written with allowance for weak nonlinearity and dispersion

for a wave propagating in one direction. With α = 0, this equation reduces to the well-known Korteweg–de-Vries
equation, and with β = 0 to the Benjamin–Ono equation [2]. This equation, in particular, is a good model for
studying internal waves in a stratified liquid. The forth term in (1.1) takes into account the nonlocal relation
between interface and pressure perturbations, and the last term models the dispersion caused by the forces due to
surface interaction between the phases.

Equation (1.1) was also obtained by O. S. Ryzhov [3]; it was used to study boundary-layer perturbations.
With a special substitution, Eq. (1.1) can be rewritten in the form [4]

Ht + (H2 − LH −Hxx)x = 0. (1.2)

Steady-state traveling periodic and soliton solutions of Eq. (1.2) were numerically constructed in [4]. Solu-
tions of a small but finite amplitude for a given wavenumber were represented in the form of a series in a small
parameter. It was shown [4] that these solutions are regular for all wavenumbers k except for a vicinity of a singular
point k∗ = 1/3 because, in this case, the phase velocities of linear perturbations for the first and second harmonics
coincide, and conditions for their resonance are satisfied [5].

The purpose of the present work is to study the interaction between perturbation triplets that satisfy spatial-
synchronism conditions.

With the neglected nonlinear term in (1.2), the phase velocity of periodic infinitesimally small (linear)
perturbations is a function of the wavenumber k = 2π/λ (λ is the wavelength):

c = k2 − |k|. (1.3)
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It follows from (1.3) that Eq. (1.2) is written in a coordinate system moving with the phase velocity of infinitely
long (k = 0) linear waves. From (1.2) and (1.3), it also follows that the resonance condition is valid for any three
harmonics with infinitesimal amplitudes, provided that their wavenumbers satisfy the relations

k0
1 + k0

2 = k0
3, k0

1c
0
1 + k0

2c
0
2 = k0

3c
0
3, c0i = k02

i − |k0
i |. (1.4)

2. We consider evolution of three harmonics that form a resonance triplet. Assuming the harmonic ampli-
tudes to be small but finite, we seek the solution of (1.2) in the form of a series

H = εH1 + ε2H2 + . . . . (2.1)

We introduce a set of fast and slow times

tn = tεn (n = 0, 1, 2, . . . ). (2.2)

Substituting (2.1) into (1.2), with allowance made for (2.2), we obtain an infinite system of linear equations. In this
system, the following equation corresponds to the first order in ε:

∂H1

∂t0
− ∂

∂x

(
LH1 +

∂2H1

∂x2

)
= 0. (2.3)

The conditions of perfect synchronism for three harmonics with infinitesimal amplitudes require relations
(1.4) to be valid. The solution of system (1.4) has the form

k0
3 = 2/3, k0

1 + k0
2 = 2/3.

We consider perturbations in the form of some combination of three harmonics with small but finite am-
plitudes whose wavenumbers k1, k2, and k3 are quite defined: each of them lies in a vicinity of the corresponding
wavenumber k0

i . In this situation, the condition of synchronism between wavenumbers

k1 + k2 = k3 (2.4)

is exactly fulfilled for these harmonics. For frequencies, these conditions are violated because

ki = k0
i + ∆i, ∆i � k0

i . (2.5)

Apparently, for relation (2.4) to be fulfilled, the deviations of the wavenumbers ∆i have to satisfy the relation

∆1 + ∆2 = ∆3. (2.6)

We seek the solution of Eq. (2.3) in the form

H1 = A exp [ik1(x− c01t)] +B exp [ik2(x− c02t)] +D exp [ik3(x− c03t)] + c.c. (2.7)

Here c.c. is a complex conjugate expression, ki are the wavenumbers for which relations (2.4) and (2.5) are fulfilled,
and c0i satisfy relations (1.4). Since the amplitudes of harmonics A, B, and D are now small but finite, each of
them are some function of time due to nonlinear interactions. We construct those solutions where these amplitudes
are functions of times slower than t0 ≡ t. For this, the condition

O(∆i) 6 O(ε) (2.8)

is to be satisfied. Indeed, substituting (2.6) into (2.3) and equating the coefficients at identical exponents to zero,
for the function A, for instance, we obtain the equation[∂A

∂t0
− ik1(c01 + |k1| − k2

1)A
]

exp [ik1(x− c01t0)] = 0. (2.9)

It follows from (1.3) and (2.9) that, for the condition ∂A/∂t0 = 0 to be fulfilled, the value of ∆1 should not be
greater, in the order of smallness, than ε. In what follows, we assume that these quantities are of the same order
of smallness, i.e., relation (2.8) transforms into the equality. Then, the term ik1(c01 + |k1| − k2

1)A in (2.9), which
is proportional to A, should be transferred into the second-order equation. Analogous manipulations may also be
done with the other harmonics. In this case, the equation

∂H1

∂t1
+
∂H2

∂t0
+
∂(H2

1 )
∂x

− ∂

∂x

(
LH2 +

∂2H2

∂x2

)
+ terms of order ∆/ε from the ε-approximation = 0 (2.10)
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corresponds to the next order in ε. The last term in (2.10) represents terms from the first approximation of (2.3).
In Eq. (2.10), secular terms are underlined (for H2

1 , only part of all terms are secular). For a restricted solution H2

to exist, it is necessary that the secular terms be equal to zero. This requirement leads to the following system of
equations for the harmonic amplitudes A, B, and D:

dA

dt1
+ ik0

1

∆1

ε
(2k0

1 − 1)A+ 2i(k3 − k2)B̄D exp [−i(k3c
0
3 − k2c

0
2 − k1c

0
1)t0] = 0,

dB

dt1
+ ik0

2

∆2

ε
(2k0

2 − 1)B + 2i(k3 − k1)ĀD exp [−i(k3c
0
3 − k1c

0
1 − k2c

0
2)t0] = 0, (2.11)

dD

dt1
+ ik0

3

∆3

ε
(2k0

3 − 1)D + 2i(k1 + k2)AB exp [i(k3c
0
3 − k1c

0
1 − k2c

0
2)t0] = 0.

From here on, the bar denotes the complex conjugation operation.
Under the assumption that the small parameter ε in (2.1) is, for instance, deviation of the first-harmonic

wavenumber ∆1 from k0
1 (i.e., ε ≡ ∆1), and with relation (2.6) between the deviations of the wavenumbers from

linear resonance harmonics taken into account, after the substitution

A→ A exp (iγt1/2), B → B exp (iγt1/2), D → D

we may write system (2.11) in the form

dA

dt1
+ i
[γ

2
+ k0

1(2k0
1 − 1)

]
A+ 2ik0

1B̄D = 0,
dB

dt1
+ i
[γ

2
+ k0

2∆(2k0
2 − 1)

]
B + 2ik0

2ĀD = 0,

dD

dt1
+ i

2(1 + ∆)
9

D +
4
3
iAB = 0.

(2.12)

Here ∆ = ∆2/∆1 and γ = k02
1 (1 + ∆)− k0

1(1 + ∆/3) + 2/9.
To examine the solutions of system (2.12), we represent the complex functions A, B, and D as

A = A1 exp (iϕA), B = B1 exp (iϕB), D = D1 exp (iψ),

where A1, ϕA, B1, ϕB , D1, and ψ are real-valued functions.
Separating real and imaginary parts in (2.12), we obtain a system of six equations for these real-valued

functions:
dA1

dt1
= 2k0

1B1D1 sinχ,
dB1

dt1
= 2k0

2A1D1 sinχ,
dD1

dt1
= −4

3
A1B1 sinχ,

dϕA
dt1

= −
[γ

2
+ k0

1(2k0
1 − 1)

]
− 2k0

1

B1D1

A1
cosχ,

(2.13)
dϕB
dt1

= −
[γ

2
+ k0

2(2k0
2 − 1)∆

]
− 2k0

2

A1D1

B1
cosχ,

dψ

dt1
= −2

9
(1 + ∆)− 4

3
A1B1

D1
cosχ.

Here χ = ψ − ϕA − ϕB .
The first three equations of system (2.13) yield the integral

A2
1 +B2

1 +D2
1 = C00, (2.14)

and from the first two equations, we obtain the second integral of motion,

k0
1B

2
1 − k0

2A
2
1 = k0

1C1. (2.15)

With (2.14) and (2.15), from (2.13) we obtain the truncated system

dA1

dt1
= 2k0

1B1D1 sinχ,
dχ

dt1
= γ1 +

[
2k0

1

B1D1

A1
+ 2k0

2

A1D1

B1
− 4

3
A1B1

D1

]
cosχ, (2.16)

where γ1 = γ + k0
1(2k0

1 − 1) + ∆k0
2(2k0

2 − 1)− 2(1 + ∆)/9.
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The solutions of system (2.14)–(2.16) by no means provide exhaustive information about the evolution of
solution (2.7) (since, with these solutions, only information about the behavior of some combination of the phases χ,
but not about the behavior of the phases ψ, ϕA, and ϕB themselves, can be obtained). To withdraw the latter
information, one has to solve system (2.13). System (2.14)–(2.16) can easily be solved in quadratures, and, analyzing
the structure of phase curves of the solutions of this system, for instance, in the plane (A1, χ), one can also gain
rather comprehensive general information about solution (2.7).

According to (2.16), the phase curves are given by the equation

−d cosχ
dA1

=
γ1

2k0
1B1D1

+
( 1
A1

+ a
A1

B2
1

− 2
3k0

1

A1

D2
1

)
cosχ,

whose solutions have the form

cosχ = (C − a1A
2
1)/[2(C1 + aA2

1)1/2(C00 − C1 − a2A
2
1)1/2A1]. (2.17)

Here a = k0
2/k

0
1, a2 = 1 + a, and C is the constant of integration for a particular trajectory defined by some initial

conditions:
C = 2A0

1(C1 + aA02
1 )1/2(C00 − C1 − a2A

02
1 )1/2 cosχ0 + a1A

02
1

(A0
1 and χ0 are the coordinates of the initial point that defines the trajectory).

In spite of the fact that the phase trajectories are explicitly given by simple formulas (2.14), (2.15), and
(2.17), even an analysis of the phase portraits of the solutions is hampered because the parameters involved are
too numerous. Representation of the characteristic solutions of system (2.13) and corresponding solutions (2.7) is
also a difficult problem. However, the analysis is facilitated by some special structural features. For instance, in
the case of k0

1 = k0
2 = 1/3 and ∆ = 1, the problem degenerates, and after some renormalizations (A+B → A), we

obtain a system for a two-wave resonance [5]. If ∆ 6= 1, then two harmonics out of three have close wavenumbers.
System (2.13) is invariant with respect to the transform

A1 → −A1, B1 → −B1, D1 → −D1, χ→ π − χ, t1 → −t1.

In addition, the transform
A1 → A1, B1 → −B1, D1 → −D1

is valid, as well as the transform
A1 → −A1, B1 → −B1, D1 → D1.

Since the phase space of the solutions of system (2.13) has a period 2π along the variable χ, we may restrict
ourselves, for instance, to consideration of the region 0 < χ < 2π, A1 > 0 in the phase plane (A1, χ).

It follows from (2.16) that the phase space may have stationary points for which the following relations hold:

χ = 0, π, γ1 = ∓
(

2k0
1

B1D1

A1
+ 2k0

2

A1D1

B1
− 4

3
A1B1

D1

)
. (2.18)

The solutions H1 corresponding to these points represent a nonlinear superposition of three steady-state traveling
waves, each having its own phase velocity and, generally speaking, incomparable wavenumbers. In addition, the
phase velocity of each wave differs from the corresponding value c0i . One of the reasons for this difference consists
in the fact that, as it follows from (2.13), each of the phases ψ, ϕA, and ϕB changes with its own constant rate in
spite of the constancy of χ. The solutions H1 that correspond to nontrivial phase curves (2.17) have even a more
complex structure.

Apart from stationary points (2.18), important structural elements of the phase space are separatrices on
which the amplitude of a harmonic passes through zero. Formulas for the projections of these separatrices onto the
phase plane (A1, χ) are given below.

1. Separatrix on which A0
1 = 0:

cosχ = −a1A1/[2(C1 + aA2
1)1/2(C00 − C1 − a2A

2
1)1/2]. (2.19)

2. Separatrix on which B0
1 = 0:

cosχ = −a1(C1 + aA2
1)1/2/[2a(C00 − C1 − a2A

2
1)1/2A1]. (2.20)

A comparison between formulas (2.19) and (2.20) performed with due regard for the conservation integrals
(2.14) and (2.16) (from which it follows that C1 = B02

1 in the first case and C1 = −A02
1 /a in the second case) shows

that these formulas define one and the same curve only if C1 = 0. In all other cases, one of these harmonics is
necessarily a non-zero one.
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Fig. 1. Projections of phase trajectories onto the planes (A1, χ) (a), (B1, χ) (b), and (D1, χ) (c) (C00 = 1,
C1 = 0.5, k0

1 = 0.5, and k0
2 = 0.166 667): 1) separatrix A0

1; 2) separatrix D0
1; 3) closed trajectories.

3. Separatrix on which D0
1 = 0:

cosχ = a1(C00 − C1 − a2A
2
1)1/2/[2a2(C1 + aA2

1)1/2A1].

It follows from an analysis of the phase curves that the behavior of an affix that moves in the phase space
along the corresponding separatrix trajectory is rather simple: in a finite time, it leaves the point in which the
harmonics that defines it equals zero and, also in a finite time, reaches another similar point. On passing through
zero, this harmonic [for separatrix (2.19), for instance, this harmonic is A1] changes its sign. At these moments, two
other harmonics reach their extreme values for the given solution. On reaching these points, the affix projection
onto the plane with the values of the corresponding harmonic and the values of χ are plotted along the axes [in the
above-indicated case, these planes are (B1, χ) and (D1, χ)] starts moving in the opposite direction.

A special case is observed for C1 = 0. In this case, as was noted above, formulas (2.19) and (2.20) define one
curve. In this curve, the harmonics A1 and B1 reach their ultimate values as t1 → ±∞, i.e., to this separatrix, a
solution of system (2.13) corresponds; the contribution of the harmonics A1 and B1 to this solution is an envelope
soliton. Thus, over long times, the solution of (2.13) for these parameters is an almost periodic steady-state
traveling wave with the wavenumber k3 and amplitude D0

1. Although the behavior of phase trajectories provides
rather extensive information about the corresponding solution (2.7), in order to completely describe it, one has
to consider system (2.13). This system was numerically solved by the fifth-order Runge–Kutta method with an
automatic choice of the step and control of computation accuracy.

Figure 1 shows the phase portrait of the solutions of system (2.16) for a typical case of C00 = 1 and C1 = 0.5.
The projections of phase trajectories onto the planes (A1, χ), (B1, χ), and (D1, χ) for k0

1 = 1/2, k0
2 = 1/6, and ∆ = 1

are shown. It is seen that this region contains two stationary points (with due regard for the periodicity of the
phase space in χ). In Fig. 1, these singular points are shown as asterisks. Both points are of the “center” type,
and their coordinates A1, B1, and D1, and χ are 0.38, 0.74, and 0.5545, and 0 and 0.497, 0.763, and 0.413, and π,
respectively.
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Fig. 2. Amplitudes of harmonics (a) and their phases (b) versus time (C00 = 1, C1 = 0.5, k0
1 = 0.5, k0

2 = 0.166 667,
and ∆ = 1): (a) curves 1–3 refer to A1, B1, and D1 harmonics; (b) curves 1–3 refer to χ, ϕB , and ϕA phases.

Fig. 3. Isolines of the solution H1, for phase curve 3 in Fig. 1 (C00 = 1, C1 = 0.5, k0
1 = 0.5,

k0
2 = 0.166 667, ∆ = 1, and ∆1 = 0.1).

Conventionally, two types of trajectories may be distinguished. The first type includes trajectories closed
around corresponding centers. Along these trajectories, the quantities χ, A1, B1, and D1 exert periodic fluctuations.
For small deviations from the corresponding stationary point, the fluctuations of these functions are almost harmonic
ones with a frequency proportional to the “squared amplitude of deviation” from the given point. As the trajectories
depart from the stationary point, the fluctuations acquire a more evolved character. In the limiting case, these closed
phase curves transform into corresponding separatrix trajectories that separate them out from open trajectories.
The second-type trajectories, as projected onto an arbitrary plane drawn through the χ axis, are open curves that
lie between the separatrices.

Figure 2 shows the time evolution of the solution of system (2.16) for the phase trajectory shown by curves 3
in Fig. 1. It follows from Fig. 2 that the amplitudes of harmonics vary appreciably (Fig. 2a), the phase difference
χ always remains restricted (curve 1 in Fig. 2b), and the phase of the harmonic A1 → ϕA, fluctuating, decreases
indefinitely (curve 3 in Fig. 2b). As a result, the form of the corresponding solution H1 (Fig. 3) bears no resemblance
to a traveling wave. In the plane (x, t1), the isolines have no definite slope and display no periodicity, although,
here, the shown interval in the x-direction is as long as six wavelengths of the harmonic D1 (the quantity λ = 2π/k0

3,
where k0

3 = 2/3, is used here as a spatial length scale).
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Fig. 4. Amplitudes of harmonics versus time for the separatrix phase curve A0
1 = B0

1 = 0 (C00 = 1,
C1 = 0, k0

1 = 0.5, k0
2 = 0.166 667, and ∆ = 1): curves 1–3 refer to A1, B1, and D1 harmonics.

As was noted above, the solution of (2.13) with C1 = 0 corresponds to the separatrix A0
1 = 0 and B0

1 = 0; over
long times, this solution is an almost periodic steady-state traveling wave with the wavenumber k3 and amplitude D0

1

(Fig. 4). Figure 4 shows the amplitudes of the harmonics as functions of time. Regions where all the three harmonics
are substantial are seen; regions where the solution is determined by the third harmonic D1 only are also observed.
Thus, the solution is a local solitonlike structure.

For phase curves close to the separatrix A0
1 = 0 and B0

1 = 0, the time dependence of the harmonic ampli-
tudes A1 and B1 is a train of solitons. The initial solution of (2.13) that corresponds to this case is a sinusoid
with the amplitude D0

1 during long time intervals; then, in a sufficiently narrow time interval, an “intermittency”
region appears, where the amplitudes of all three harmonics are comparable. This process recurs over and over.
The “intermittency” period is incomparable with the main natural periods of the H1 wave.

Thus, for long-wave perturbations at the interface of two liquids, considered within the framework of model
(1.4), the structure of wave modes with wavenumbers forming resonance triplets was examined. An analysis of the
solutions of systems (2.13) and (2.16) shows that this structure is rather complex. It is shown that two families of
solutions, represented in the phase space by stationary points, constitute a complex superposition of three steady-
state traveling waves. In a vicinity of each of these solutions, there are families being their further complications
owing to modulation of frequencies and amplitudes of the triplets in time. Under certain conditions, in the limiting
case, they transform into specific solutions generally represented by a steady-state traveling wave with a constant
amplitude D0

1 and, simultaneously, in a certain narrow zone, are a superposition of three harmonics bounded by
envelope solitons.
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